
3 4 4 5 6 0377869 b

Jack J. Dongarra
David W. Walker

- r .,

. . ~. _ - ~ ~ ~ .. _ _ - , -. . . .

I

. .

ORNL/TM-12309

vi'; Engineering Physics and Mathematics Division

Mathematical Sciences Section 9

PARALLEL MATRIX TRANSPOSE ALGORITHMS

ON DISTRIBUTED MEMORY CONCURRENT COMPUTERS

Jaeyoung Choi 5
Jack J . Dongarra f t
David W. Walker f

f Mathematical Sciences Section
Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, T N 37831-6367

University of Tennessee at Knoxville
107 Ayres Hall
Knoxville, T N 37996-1301

t Department of Computer Science

Date Published: October 1993

Research was supported by the Applied Mathematical Sciences Re-
search Program of the Office of Energy Research, U S . Department
of Energy, by the Defense Advanced Research Projects Agency un-
der contract DAAL03-91-G0047, administered by the Army Re-
search Office, and by the Center for Research on Parallel Comput-

I ing

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DEAC05-840W1400

3 445b 0 3 7 7 8 b 9 b

Contents

1 Introduction . 1
2 DesignIssues . 2
3 Matrix Transpose Algorithms . 5

3.1 P and Q : relatively prime . 7
3.2 P and Q : not relatively prime . 9

4 Results . 13
5 Conclusions and Remarks . 18
6 References . 18

PARALLEL MATRIX TRANSPOSE ALGORITHMS

ON DISTRIBUTED MEMORY CONCURRENT COMPUTERS

Jaeyoung Choi

Jack J. Dongarra

David W. Walker

Abstract

This paper describes parallel matrix transpose algorithms on distributed memory con-
current processors. We assume that the matrix is distributed over a P x Q processor
template with a block scattered data distribution. P , Q, and the block size can be arbi-
trary, so the algorithms have wide applicability.

The communication schemes of the algorithms are determined by the greatest common
divisor (GCD) of P and Q. If P and Q are relatively prime, the matrix transpose algo-
rithm involves complete exchange communication. If P and Q are not relatively prime,
processors are divided into GCD groups and the communication operations are overlapped
for different groups of processors. Processors transpose G C D wrapped diagonal blocks si-
multaneously, and the matrix can be transposed with LCMIGCD steps, where LCM is
the least common multiple of P and Q.

The algorithms make use of non-blocking, point-to-point communication between pro-
cessors. The use of nonblocking communication allows a processor to overlap the messages
that it sends to different processors, thereby avoiding unnecessary synchronization.

Combined with the matrix multiplication routine, C = A B, the algorithms are used
to compute parallel multiplications of transposed matrices, C =r AT. BT, in the PUMMA
package [5]. Details of the parallel implementation of the algorithms are given, and results
are presented for runs on the Intel Touchstone Delta computer.

- v -

1. Introduction

Matrix transposition is a fundamental matrix operation of linear algebra [8,14] and arises in

many scientific and engineering applications. On a uniprocessor, an algorithm involving a trans-

posed matrix may not actually require the matrix data to be transposed in physical memory.

Instead, it may be accessed simply by exchanging the row and column indices. However, in a

distributed-memory multiprocessor environment, we cannot simply interchange the global row

and column indices. Instead, the data must be physically moved from one processor to another.

Transposition of a matrix is a redistribution of its elements. Many researchers have con-

sidered the problem for different architectures. In 1972, Eklundh [7] considered the problem

of directly accessing rows or columns of a matrix when its size is larger than the available

high-speed storage. O’Leary [12] implemented an algorithm for transposing an N x N matrix

on a one-dimensional systolic array. Azari, Bojanczyk and Lee [l] developed an algorithm for

transposing an M x N matrix on an N x N mesh-connected array processor, and Johnson and

Bo [lo] presented an algorithm for a Boolean n-cube, or hypercube.

Current advanced architecture computers possess hierarchical memories in which accesses

to data in the upper levels of the memory hierarchy (registers, cache, and/or local memory) are

faster than those in lower levels (shared or off-processor memory). To exploit the power of such

machines, block-partitioned algorithms are preferred for dense linear algebra computations, in

which operations are performed on submatrices, rather than individual matrix elements. In

distributing matrix data over processors we therefore assume a block scattered decomposition

[4,6]. The block scattered decomposition can reproduce the most common data distributions

used in dense linear algebra, as described briefly in the next section.

In this paper, the parallel matrix transpose algorithms are presented based on the block

scattered decomposition. The algorithms are implemented on the Intel Touchstone Delta com-

puter. The communication schemes of the algorithms are determined by the greatest common

divisor (GCD,) of the number of rows and columns (P and Q) of the processor template. If P

and Q are relatively prime, the matrix transpose algorithm involves complete exchange com-

munication. This is called all-to-all personalized communication, in which each of Np = P . Q

processors is required to send distinct subblocks to each of the remaining Np - 1 processors,

and receive distinct subblocks from each of them. Bokhari and Berryman [2] have developed

binary exchange and quadrant exchange algorithms on a circuit switched mesh, where P and

Q are powers of 2. The complete exchange communication in our transpose algorithms arises

for any processor configuration, and is not limited to the case where P and Q are powers of

2. We implemented the complicated two-dimensional complete exchange communication prob-

lem by generalizing the one-dimensional complete exchange communication based on direct

point-to-point communication. Details are discussed in Section 3.1.

- 2 -

We have presented the Parallel Universal Matrix Multiplication Algorithms (PUMMA) in [5]

for performing C a op(A) . op(B) + ,L? C , where o p (X) = X or XT, based on the block

scattered decomposition. One of the cases in the PUMMA package, C + AT . B' + /3 C ,

is implemented in two steps (T -+= a B . A; C The second step involves

parallel matrix transposition. The performance of this algorithm for evaluating C = AT . BT
is compared with the algorithm for evaluating C = A . B on the Intel Delta machine in

Section 4.

TT + P C) .

2. Design Issues

The way in which an algorithm's data are distributed over the processors of a concurrent

computer has a major impact on the load balance and communication characteristics of the

concurrent algorithm, and hence largely determines its performance and scalability. The block

scattered decomposition provides a simple, yet general-purpose way of distributing a block-

partitioned matrix on distributed memory concurrent computers. In the block scattered de-

composition, described in detail in [4,6], an M x N matrix is partitioned into blocks of size r x s ,

and blocks separated by a fixed stride in the column and row directions are assigned to the

same processor. If the stride in the column and row directions is P and Q blocks respectively,

then we require that P . Q equal the number of processors, Np. Thus, it is useful to imagine the

processors arranged as a P x Q mesh, or template. The processor at position (p , q) (0 5 p < P ,

0 5 q < Q) in the template is assigned the blocks indexed by,

where i = 0 , . . . , [(Mb - p - 1)/PJ , j = 0, . . . , [(Na - q - 1)/QJ, and Mb x Nb is the size in

blocks of the matrix (Mb = rM/r] , Nb = [N/ s l) .

Blocks are scattered in this way so that good load balance can be maintained in parallel

algorithms, such as LU factorization [3 ,6] . The nonscattered decomposition (or pure block

distribution) is just a special case of the scattered decomposition in which the block size is

given by r = [M/P1 and s = [N/Q1. A purely scattered decomposition (or two-dimensional

wrapped distribution) is another special case in which the block size is given by r = s = 1.

If P and Q are relatively prime, the matrix transpose algorithm involves a two-dimensional

complete exchange communication, where each of Np processors is required to send distinct

subblocks to each of the remaining Np - 1 processors, and receive distinct subblocks from each

of them. We implemented the complicated two-dimensional complete exchange algorithm by

generalizing the one-dimensional complete exchange algorithm. Three one-dimensional com-

plete exchange communication schemes are shown in Figure 1, where each processor needs one

subblock from each other processor, and the number in parentheses denotes the number of

- 3 -

n 3 2*5 -
0
0
8 - 2.0 -
c1 i3

1.5 -

step1 step2 step3 step 1 step2 step3 step1 step2 step3
(a) Binarv Exchange (b) Rotating (c) Direct communicatiw.

-
,+

0

.+'

x 0 Rotating

,
'+'

-
,*'

,+'
- .

Figure 1: Three complete exchange communication schemes on 8 processors. The number in
parentheses denotes the amount of data to transmit.

Block S i z e (Kbytes)
Figure 2: Comparison of three exchange communication schemes on 16 processors.

- 4 -

0 1 2 3 4 5 6 7 8 9 1 0 1 1 0 1 2 3 4 5 6 7 8 9 1 0 1 1

(a) block distribution over template. (b) LCM block distribution

Figure 3: A matrix with 12 x 12 blocks is distributed over a 2 x 3 processor template. (a) Each
shaded and unshaded area represents different templates. The numbered squares represent
blocks of elements, and the number indicates at which location in the processor template the
block is stored - all blocks labeled with the same number are stored in the same processor.
The slanted numbers, on the left and on the top of the matrix, represent indices of row block
and column block, respectively. (b) The matrix has 2 x 2 LCM blocks. Blocks belong to the
same processor if the relative locations of blocks are the same in each square LCM block. The
definition of the L C M block is defined in the text.

subblocks to transmit.

The binary exchange scheme completes in rlog,P1 steps and the amount of data transmit-

ted in each step is fixed at 2i'0g2p1-1 subblocks, where P is the number of processors. The

rotating scheme can avoid network congestion, but requires P - 1 steps and the amount of data

transmitted in the initial steps is large. In the direct point-to-point communication scheme,

the number of steps is the same in the rotating scheme, but the amount of data transmitted in

each step is only one subblock.

The three schemes have been implemented on 16 nodes of the Delta and their performances

are compared in Figure 2. The binary exchange and the rotating schemes are implemented

with an odd-even communication scheme, which is preferable to a simultaneous communication

scheme on the Delta [5,11]. In this algorithm, odd-numbered processors send their own blocks

and even-numbered processors receive them in the first step, and even-numbered processors

send and odd-numbered processors receive in the next step. On P = 2d processors, as shown in

Figure 2, the binary exchange scheme is the fastest. However, if P is not a power of 2, then this

scheme becomes very complicated and may be slower than the direct communication scheme.

The direct communication scheme is about 20% slower than the binary exchange scheme for

the worst case (P = 2 d) , but it is simple to implement on an arbitrary number of processors.

We adopted the simple direct communication scheme for the implementation of the matrix

transpose algorithms, which are explained in detail in the next section.

- 5 -

0 1 2 3 4 . 5

0 1 2 3 4 5

A

3

4

5

AT
(a) matrix transpose from matrix point-of-view

0 3 1 4 2 5

0 3 1 4 2 5

A

(b) matrix transpose

transpose -

from processor

0

2

4

1

3

5u
AT

point-of-view

Figure 4: An example of matrix transpose for a block scattered decomposition, when P = 2,
Q = 3, and Ma = Nb = 6.

3. Matrix Transpose Algorithms

We assume that a matrix is distributed over a two-dimensional processor mesh, or template, so

that in general each processor has several blocks of the matrix as shown in Figure 3 (a), where

a matrix with 12 x 12 blocks is distributed over a 2 x 3 template. Denoting the least common

multiple of P and Q by LCM, we refer to a square of LCM x L C M blocks as an L C M block.

Thus, the matrix may be viewed as a 2 x 2 array of LCM blocks, as shown in Figure 3 (b). The

concept of the LCM block was introduced in [5], and is very useful for implementing algorithms

that use a block scattered data distribution. Blocks belong to the same processor if their relative

locations are the same in each square L C M block. An algorithm may be developed for the

first LCM block, and then it can be directly applied to the other L C M blocks, which all have

the same structure and the same data distribution as the first LCM block. That is, when

an operation is executed on a block of the first LCM block, the same operation can be done

simultaneously on other blocks, which have the same relative location in each L C M block.

0 1 2 3 4 5

- 6 -

0 1 2 3 4 5

0

A

I

transpose

3

4

5

(a) matrix transpose from matrix point-of-view

0 3 1 4 2 5

0 3 1 4 2 5

transpose

A
AT

(b) matrix transpose from processor point-af-view

Figure 5: An example of matrix transpose for a block scattered decomposition, when P = 3,
Q = 3, and Ma = Nb = 6 .

We now describe parallel matrix transpose algorithms. A matrix A, distributed over a

P x Q processor template, has Mb x Na blocks and each block consists of T x s elements,

where r and s are arbitrary. Figure 4 (a) shows an example of a matrix transpose on a 2 x 3

template. If A is transposed, the transposed matrix AT is distributed over the same P x Q

template] and it has Nb x Mb blocks and each block has s x T elements. The elements of each

block remain in the same block, but may be in a different processor, and each block is itself

transposed. Figure 4 (b) shows the same example from the processor point-of-view. If P and

Q are relatively prime, as shown in the figure, blocks in the first processor Po are scattered to

all processors. As shown in Figure 5, which is the same example on a 3 x 3 square template,

the blocks in each processor are not dispersed, but they are moved as one entity to a different

processor. Parallel matrix transpose algorithms for the block scattered data distribution have

several communication patterns determined by the greatest common divisor (GCD) of P and

Q-

- 7 -

D O J = O , Q - l
DO I = 0 ,P - 1

[Copy all blocks of A required by P(p + I, q - J) to T1
(in condensed and transposed form)]
[Send T1 to P(p + I , q - J)]
[Receive T2 from P (p - I , q 3- J)]
[Copy T2 to C]

END DO
END DO

Figure 6: A parallel matrix transpose algorithm from the processor point-of-view, when P and
Q are relatively prime. P(p, Q) represents PMOD(~,P),MOD(~,Q). Processor Pp,q (0 5 p < P and
0 5 q < Q) communicates with P @ + I , q - J } to send, and P (p - I , q + J) to receive based
on direct point-to-point communication. ‘ p + I’ and ‘ q - J’ can be replaced with a different
combination of signs.

3.1. P and Q : relatively prime

We start with the simple case where P and Q are relatively prime, i. e. GCD = 1. In this

case blocks in Po are scattered to all processors after being locally transposed as shown in

Figure 4 (b). This case involves the two-dimensional complete exchange communication. That

is, every processor needs to communicates with every other processor. The complete exchange

problem is implemented by direct communication between sender and receiver.

Figure 6 shows the pseudocode from the processor point-of-view, where P(pl q) represents

PMOD(~,P),MOD(~,Q) in the processor template. Processor P (p , q) (0 5 p < P and 0 5 q < Q)

starts to transpose blocks whose transposed blocks belong to itself. Then it deals with blocks

whose transposition are in processors in the same column of the template (P(p-i, q) , 0 5 i < P) .

The processor sends blocks to its top neighbor, P(p- 1 , Q), and receives blocks from its bottom

neighbor, P(p + 1, q) . Before sending the blocks, it is necessary to copy the blocks to be sent

into a contiguous message buffer. Next it sends blocks to the next top processor, P (p - 2, q) ,

and receives blocks from the next bottom processor, P (p + 2, q) .

After it completes its operations with the processors in the same column, it sends blocks to

the processors to the left in the template (P (p - i , q - l), 0 5 i < P) , and receives blocks from

the processors to the right (P (p + i , q + 1)). All operations are completed in P x Q = L C M

steps.

We interpret the algorithm from the matrix point-of-view. In the first LCM block, the above

algorithm performs the operation by transposing one (wrapped) diagonal blocks at one step.

(Actually the algorithm transposes every LCM diagonal blocks of the matrix at each step.)

The first step of the algorithm in Figure 6 requires no explicit communication. It corresponds

- 8 -

(c) fourth diagonal (A(ij). MOD(i-i ,LCW) (d) first diagonal (A(ij). MOD(j-i,LCM)=l)

Figure 7: Snapshots of matrix transposition when P = 2, Q = 3 and Mb = Nb = 6. The
small slanted number in the upper left corner in each block represents processor identification
number. One wrapped block diagonal is trarisposed in each step. The darkly shaded area
represents blocks to be shifted, and lightly shaded area stands for their transpositions.

- 9 -

DO J = 0 , Q - 1
K = J
WHILE (MOD(A-, P) # 0)

* Deterimine K-th diagonal block to transpose *\
DO K = hilOD(K f Q, L C M) END DO

DO I = 0,P - 1
[Copy every (K : Nb : LCM)-th wrapped diagonal blocks in Pp,g to Tl]
[Move T1 from Pp,p to P(p + I, q - J }]
[Copy the received T1 to C]
K = MOD(K + Q , L C M)

END DO
END DO

Figure 8: A parallel matrix transpose algorithm from the niatrix point-of-view, when P and
Q are relatively prime. One diagonal block is transposed at one step. The ‘While’ statement
should be executed until MOD(K, E‘) becomes 0. (start : firnit : ilztv) represents values of 2,
where x = start + intv . y, y = 0 ,1 , . . ., and x can’t exceed limit.

to an in-place transpose of the diagonal blocks of A (A(i , i)) (See Fig. 7(a)). Then every P

diagonal blocks of A (A(i, j) , MOD(j - i, P) = 0) (See Fig. 7(b)) are transposed in the first

outer loop (J = 0) of Figure G. In the next outer loop (J = 1)’ the next P diagonal blocks

(A(i , j) ,MOD(j- i ,P) = 1) are transposed. In Figures 7 (c) and (d), PO (P(0,O)) sends blocks

to P2 (P(0 , Z)), and receives from PI (P(0 , I)), where PO, PI and P2 are in the same row. Then

PO sends blocks to PS (P(1,2)), and receives from P4 (P(1, l)), and so on. The pseudocode for

the algorithm from the matrix point-of-view is shown in Figure 8. Processors need to determine

a diagonal block of A (A(i , j) ,MOD(j - i , L C M) = I<) which they start to transpose in the

outer J loop in order to communicate with other processors in the same row of the template.

The two lines before the inner DO-loop compute the value of K .

3.2. P and Q : not relatively prime

In the previous section, we have investigated the case when Y and Q are relatively prime, which

involves complete exchange communication. In this section we consider the case of GGD > 1.

The former algorithm is a special case (GCD = 1) of this algorithm.

Figure 9 shows an example of transposing a 12 x 12 matrix on a 4 x 6 template from the

processor point-of-view. Each processor has its own 3 x 2 (= LCMIP x L C M I Q) array of

blocks. The processors can transpose the matrix with 6 (= L C M I P . LCM/Q = LCM/GCD)

communications steps. As shown in Figure 10, a processor P (p l q) starts to communicate

with P($, ij), where 5 and are computed from p and q (details are explained later of this

section). Once P @ , g is determined, it communicates with other processors, whose vertical

and horizontal intervals are GCD from P(P,@). The two loops of the algorithm in Figure 6 are

- 1 0 -

0 6 1 7 2 8 3 9 4 1 0 5 1 1 0 6 1 7 2 8 3 9 4 1 0 5 1 1
0
4
8
1

5
9

2

6
10
3
7
11

-

Figure 9: A matrix transpose example on a 4 x 6 template.

Figure 10: Processor map for communication. A processor P(p , q) starts to communicate with
P(g, i) , then it cominunicates with other processors, whose vertical and horizontal intervals are
GCD from P (F , 6).

- 11 -

PARDO K = 1, GCD
g = MOD(q - p , GCD)
F = MOD(p + 9, P) ; @ = MOD(q - 9, Q)
DO J = 0, L C M / P - 1

DO I = 0, L C M / Q - 1
[Copy to T1 (in condensed and transposed form) all blocks of A

required by P(g + I x GCD, - J x GCD)]
[S e n d T l t o P (i + I x G C D , i - J x G C D)]
[Receive T2 from P@ - I x GCD, @ + J x GCD)]
[Copy T2 to C]

END DO
END DO

END PARDO

Figure 11: A modified matrix transpose algorithm from the processor point-of-view. Operations
of GCD groups of processors are overlapped.

cprocessor template>

(a) transposing the zeroth wrapped block (b) transPosing the first wrapped block
Figure 12: Two snapshots of matrix transposition for transposing the zeroth and first wrapped
block diagonals, when P = 4, Q = 6 a i d Ma = Nb = 12. In this example, transposing of even
numbered wrapped block diagonals can be overlapped with that of odd numbered.

- 1 2 -

A AT

Figure 13: Matrix transposition when P = Q = GCD = 3. Processors transpose 3 (= GCD)
diagonal blocks a t one step, so that the transposition is done in one step.

PARDO K = 1, GCD
g = MOD(q - p , GCD)

D O J = O , L C M / P - l
6 = MOD(p + 9, P) ; Q = MOD(q - 9, Q)

K = J * Deterimine K-th diagonal block to transpose *\
WHILE (MOD(K - g, P) # 0)
D O I = O , L C M / Q - l

DO K = MOD(K + Q, L C M) END DO

[Copy every (K : Nb : LCM)-th diagonal blocks in P(p , q) to T1]
[Move T1 from P (p , q) to P(F+ I x GCD, Q - J x GCD)]
[Copy the received TI to C]
K = MOD(K + Q, L C M)

END DO
END DO

END PARDO

Figure 14: A modified matrix transpose algorithm from matrix point-of-view. GCD diagonal
blocks are transposed simultaneously.

- 1 3 -

changed from Q and P to LCMIP and L C M I Q . The pseudocode of the algorithm is shown

in Figure 11.

Figure 12 shows two snapshots of the same example, from the matrix point-of-view, to

transpose the zeroth and the first diagonal blocks of A (A (i , j) , MOD(j - i, L C M) = 0 and 1,

respectively.) The processors which have the blocks to send out are shaded at the bottom. In

the example, only P . Q / GCD processors are involved in block communication in each step.

Processors are split into GCD groups of processors, and a processor P (p , q) belongs to a group

g if it has the same value of g = MOD(q - p , GCD). Processors in a group g send and receive

their blocks to other processors in another group g’ = MOD(GCD - g, GCD). The operations

of each group can be overlapped.

The problem is interpreted from the matrix point-of-view. In general, for transposing

the k-th diagonal block of A (A (i , j) , MOD(j - i , L C M) = k), a group of processors g k =
MOD(k,GCD) send the blocks to another group g i = MOD(GCD - gk, GCD). Since the

operations are overlapped over different groups of processors, processors transpose GCD diag-

onal blocks simultaneously. So, the matrix can be transposed with LCMIGCD steps. For the

extreme case of P = Q = G C D = 3 as shown in Figure 13, processors transpose 3 (= GCD)

diagonal blocks a t one step. That is, the transposition is done in one step. A processor Pip, q)

exchanges data with processor P (q , p) . The pseudocode of the algorithm from the matrix

point-of-view is shown in Figure 14. The code includes the case of G C D = 1.

96 processors 64 processors 48 processors

P x Q Time (second) P x Q Time (second) P x Q Time (second)

6 x 16 0.404 4 x 16 0.596 4 x 12 0.652
8 x 12 0.330 8 x 8 0.572 6 x 8 0.546

12 x 8 0.307 16 x 4 0.475 8 x 6 0.527
16 x 6 0.381 12 x 4 0.547

Table 1: Dependence of performance on template configuration for fixed number of processors
(M = N = 2400).

4. Results

In this section we present performance results of the parallel matrix transpose algorithms on

the Intel Touchstone Delta computer. The performance of the transpose algorithms cannot be

represented in floating point operations per second (flops), since there is no multiplications or

additions in the transpose algorithms. The algorithms are combined with a matrix multipli-

cation routine in the PUMMA to compute C = CY AT + BT + ,6 C in two steps (T Q B . A;
C e TT + P C) . We assume that CY = 1 and p = 0 in our test. The performance of AT BT is

compared with that of A . B.

- 14 -

3.0 -

2.0 -

1.0 -

0.0

v) 8.0

7.0

a
0

-

-

-

I I I I I I

6.0

5.0

4.0

Matrix elements are generated uniformly on the interval [-1,1] in double precision. Con-

versions between measured runtimes and performance in gigaflops (Gflops) are made assuming

an operation count of 2 M N L for the multiplication of a M x L by a L x N matrix. In our test

examples, all processors have the same number of blocks so there is no load imbalance. The

algorithms were implemented with force type communication [9].

First, we considered how, for a fixed number of processors Np = P x Q , performance depends

on the configuration of the processor template. Some typical results are presented in Table 1

for a fixed number of processors. In the test, the block size is fixed at 5 x 5 elements. It may be

seen that the template configuration does have some effect on performance. The performance

difference is between 19 and 24 %. For rectangular templates with different aspect ratios, the

algorithm prefers those with small Q to those with small P . On the Delta, communication

speed along vertical links seems faster than along horizontal links.

Figures 15 - 19 show the performance of the routines on 15 x 16 (GCD = 1, i.e., P and

Q are relatively prime), 14 x 16 (GCD = 2), 12 x 16 (GCD = 4), 8 x 16 (GCD = 8), and

16 x 16 (P = Q = GCD = 16) templates, respectively. In all cases the block size is fixed

at 5 x 5 elements. The solid and the dashed lines show the performance of AT . BT and

A . B, respectively. The difference of the two lines shows the loss of performance due to matrix

transposition.

The transposed multiplication routine shows good performance relative to matrix multipli-

cation. The loss of performarice due to the matrix transpose routine is about 2 or 3 %. The

- 15 -

E%
0

7.0 -

6.0 -

5.0 -

4.0 -
3.0 -

2.0 -

1.0 -

0.0

I I I 1 I I _

- - - - A x B -
-

-

-

-

-

-

I I I I I I

Figure 16: Performance comparison of A . B and AT.BT on 14 x 16 template. (P = 14, Q = 16,
and GCD = 2)

% 6.0-

5.0 -

4.0 -

3.0 -

2.0 -

1.0 -

0.0

I I I I I I I

- - - - A x B -

-

-

-

-

-

I I I I I I I

Figure 17: Performance comparison of A - B and AT .BT on 12 x 16 template. (P = 12, Q = 16,
and GCD = 4)

4.0'
8
0

3.0

2.0

1 .o

0.0

- 16 -

I I I I I I I

I I I I I I I
800 1600 2400 3200 4OOO 4800 5600

Matrix Size, M

Figure 18: Performance comparison of A . B and AT . BT on 8 x 16 template. (P = 8, Q = 16,
and GCU = 8)

6.0

5.0

4.0

3.0

2.0

1 .o

0.0
0 1600 3200 4800 6400 8Ooo

Matrix Size, M

Figure 19: Performance comparison of A . B and AT . BT on 16 x 16 template. (P = Q =
GCD = 16).

- 17 -

P x Q Matrix Size Block Size Time (second)
1 x 1 1.857

8 x 16 4800 x 4800 5 x 5 1.612
300 x 300 1.564

1 x 1 1.280
12 x 16 4800 x 4800 5 x 5 0.893

100 x 100 0.882
1 x 1 1.484

14 x 16 5600 x 5600 5 x 5 1.193
50 x 50 1.161
1 x 1 1.740

15 x 16 6000 x 6000 5 x 5 1.437
25 x 25 1.426
1 x 1 1.967

16 x 16 6400 x 6400 5 x 5 1.967
400 x 400 1.967

Table 2: Dependence of performance on block size.

transpose routine has excellent performance if P and Q are relatively prime. In other cases

(GCD 2 a), network congestion may degrade the performance of the routine.

P X Q Matrix Size (A, B) A . B (%) A T . BT (%)
1 x 1 500 x 500 36.70 (100.0) 35.04 (100.0)
8 x 16 5600 x 5600 32.05 (87.3) 30.57 (87.3)

12 x 16 6720 x 6720 32.09 (87.4) 31.64 (90.3)
14 x 16 6720 x 6720 32.52 (88.6) 32.11 (91.6)
1 5 x 16 7200 x 7200 32.78 (89.3) 32.43 (92.6)
16 x 16 8000 x 8000 31.22 (85.11 30.38 (86.7)

Table 3: Performance per node in Mflops. Block size is fixed to 5 x 5 elements. 1 x 1 template
gives performance of assembly-coded matrix multiplication. Numbers in parentheses represent
efficiency compared with the performance on 1 processor.

Table 2 shows how the block size affects the performance of the algorithms. I t includes

three cases of the block size, two extreme caes - the smallest and largest possible block sizes -

and 5 x 5 block of elements. If P = &, processors directly copy all blocks at once, so block size

does not affect the performance. For the case of the smallest block size (1 x 1 element) when

P # &, processors make a copy element by element, so it takes a little more time to make a

copy. The routines with the smallest block sizes are slower than those with the largest possible

block sizes by between 15% and 31%. This difference is negligible, compared with the total

elapsed time of the matrix multiplication.

Performance per node is shown in Table 3. The 1 x 1 template gives the performance of

the assembly-coded level 3 BLAS matrix multiplication routine for the two cases A . B and

- 18-

A" . B". Processors have about 85% efficiency for A B, and 87% for AT . B" if P = Q = 16.

The routines perform better on templates for which P # Q. Processors achieve about 89%,

and 93% of efficiency for each case if P and Q are relatively prime.

5. Conclusions and Remarks

We have presented parallel matrix transpose algorithms based on the block scattered decom-

position. 'The algorithms have good performance for arbitrary processor configurations on the

Intel Delta computer.

If P and Q are relatively prime, the transpose routine involves complete exchange commu-

nication on a two-dimensional template. We have approached this complicated problem with a

direct point-to-point communication scheme (see Section 2). When P and Q are not relatively

prime (GCD > 1), the processors' operations are overlapped over different groups, so that only

LCMIGCD communications are required.

In our Fortran implementation, we assume that the first dimension of the matrix may be

different from the number of rows of the matrix in a processor. Even when P = Q, the processor

needs to copy blocks of A to a communication buffer before sending, and copy the received

buffer to blocks of C after receiving.

The parallel matrix transpose algorithms have been combined with matrix multiplication

routines. The integrated routines comprise a general-purpose matrix multiplication package,

called PUMMA [5], for MIMD message-passing computers. The package has good performance

for a wide range of decomposition parameters, that is, its performance depends weakly on

processor configuration and block size.

The PUMMA package is currently available only for double precision real data, but will be

implemented in the near future for other data types, i.e., single precision real and complex, and

double precision complex. 'To obtain a copy of the software and a description of how to use it,

send the message "send pumma from misc" to netlib9ornl.gov.

Acknowledgments

The authors would like to thank Eduardo D'Azevedo at ORNL for his helpful suggestions

to improve the quality of the paper. 'This research was performed in part using the Intel

Touchstone Delta System operated by the California Institute of Technology on behalf of the

Concurrent Supercomputing Consortium. Access to this facility was provided through the

Center for Research on Parallel Computing.

6. References

[l] N . G. Azari, A. W. Bojanczyk, and S.-Y. Lee. Synchronous and asynchronous algorithms

- 1 9 -

for matrix transposition on MCAP. In SPIE Vol. 975, Advanced Algorithms and Archi-

tecture for Signal Processing III: pages 277-288, 1988.

[2] S. H. Bokhari and H. Berryman. Complete exchange on a circuit switched mesh. In

Proceedings of the 1992 Scalable Hagh Performance Computing Conference, pages 300-

306. IEEE Press, 1992.

[3] J. Choi, J. J . Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: A scalable linear

algebra library for distributed memory concurrent computers. In Proceedings of Fourth

Symposium on the Frontiers of Massively Parallel Computation (McLean, Vzrginia). IEEE

Computer Society Press, Los Alamitos, California, October 19-21 1992.

[4] J. Choi, J. J. Dongarra, and D. W. Walker. The design of scalable software libraries

for distributed memory concurrent computers. In Proceedings of Environment and Tools

for Parallel Scientific Computing Workshop, (Saint Hilaire du Touvet, France). Elsevier

Science Publishers, September 7-8 1992.

[5] J. Choi, J. J. Dongarra, and D. W . Walker. PUMMA : Parallel universal matrix mul-

tiplication algorithms on distributed memory concurrent computers. Technical Report

TM-12252, Oak Ridge National Laboratory, Mathematical Sciences Section, April 1993.

[6] J. J . Dongarra, R. van de Geijn, and D. Walker. A look at scalable linear algebra libraries.

In Proceedings of the 1992 Scalable High Performance Computing Conference, pages 372-

379. IEEE Press, 1992.

[7J J . 0. Eklundh. A fast computer method for matrix transposing. IEEE Transactions on

Computers, 21:801-803, 1972.

[8] G. H. Golub and C. V. Van Loan. Matriz Computations. The Johns Hopkins University

Press, Baltimore, MD, 1989. Second Edition.

191 Intel Corporation. Touchstone Delta Fodran Calls Reference Manual, April 1991.

[lo] S. L. Johnsson and C.-T. Ho. Algorithms for matrix transposition on boolean n-cube

configured ensemble architecture. SIAM J. Matrix Anal. Appl, 9:419-454, July 1988.

[ll] R. Littlefield. Characterizing and tuning communications performance for real applica-

tions. In Proceedings, First Intel Delta Application Workshop, GCSF-14-92, Pasadena,

California, pages 179-190, February 1992. presentation overheads.

[12] D. P. O'Leary. Systolic arrays for matrix transpose and other reorderings. IEEE Trans-

actions on Computers, 36:117-122, January 1987.

- 20 -

[13] S. R. Seidel. Broadcasting on lineat arrays and meshes. Technical Report TM-12356, Oak

Ridge National Laboratory, Mathematical Sciences Section, March 1993.

[14] G. Strang. Linear Algebra and Its Applications. Harcourt Brace Jovanovich, Inc., San

Diego, CA, 1988. Third Edition.

- 21 -

ORNL/TM-12309

INTERNAL DISTRIBUTION

1.
2-6.
7-8.

9.
10-14.

15.
16.

17.
18.

19.
20.
21.
22.

B. R. Appleton
J. Choi
T. S. Darland
E. E’. D’Azevedo
J. J. Dongarra
J. B. Drake
T. H . Dunigan

G. A. Geist
L. J . Gray

M. R. Leuze
E. G. Ng
C. E. Oliver
B. W. Peyton

23-27.

28.
29.

30-34.
35-39.
40-44.

45.

46.
47.

48.
49.
50.

51-52.

S. A. Raby
C. H. Romine
T. H. Rowan
R. F. Sincovec
D . W. Walker
R. C. Ward
P. H. Worley
Central Research Library
ORNL Patent Office

K-25 Applied Technology Library
Y-12 Technical Library
Laboratory Records Department - RC
Laboratory Records Department

EXTERNAL DISTRIBUTION

53. Christopher R. Anderson, Department of Mathematics, University of California, Los An-

geles, CA 90024

54. David C. Bader, Atmospheric and Climate Research Division, Office of Health and En-

vironmental Research, Office of Energy Research, ER-76, U .S. Department of Energy,

Washington, DC 20585

55. David H. Bailey, NASA Ames, Mail Stop 258-5, NASA Ames Research Center, Moffet

Field, CA 94035

56. Edward H. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia National

Laboratory, Albuquerque, NM 87185

57. Colin Bennett, Department of Mathematics, University of South Carolina, Columbia, SC

29208

58. Dominique Bennett, CERFACS, 42 Avenue Gustave Coriolis, 31057 Toulouse Cedex,

FFLANCE

59. Marsha J . Berger, Courant Institute of Mathematical Sciences, 251 Mercer Street, New

York, NY 10012

- 22 -

60. Mike Berry, Department of Computer Science, University of Tennessee, 107 Ayres Hall,

Knoxville, T N 37996-1301

61. Ake Bjorck, Department of Mathematics, Linkoping University, S-581 83 Linkoping, Swe-

den

62. A. W. Bojanczyk, School of Electrical Engineering, Cornel1 University, ETC Building,

Rm 337, Ithaca, NY 14853-6367

63. John H . Bolstad, Lawrence Livermore National Laboratory, L-16, P. 0. Box 808, Liver-

more, CA 94550

64. George Bourianoff, Superconducting Super Collider Laboratory, 2550 Beckleymeade Av-

enue, Suite 260, Dallas, T X 75237-3946

65. Roger W. Brockett, Pierce Hall, 29 Oxford Street, IIarvard University, Cambridge, MA

02138

66. Bill L. Buzbee, National Center for Atmospheric Research, P. 0. Box 3000, Boulder, CO

80307

67. Thomas A. Callcott, Director, The Science Alliance Program, 53 Turner House, University

of Tennessee, Knoxville, T N 37996

68. Captain Edward A. Carmona, Parallel Computing Research Group, U S . Air Force Weapons

Laboratory, Kirtland AFB, NM 87117

69. John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical Sci-

ences, Office of Energy Research, U.S. Department of Energy, Washington, DC 20585

70. I-hang Chern, Mathematics and Computer Science Division, Argonne National Labora-

tory, 9700 South Cass Avenue, Argonne, IL 60439

71. Alexandre Chorin, Mathematics Department, Lawrence Berkeley Laboratory, Berkeley,

CA 94720

72. Ray Cline, Sandia National Laboratories, Livermore, CA 94550

73. James Corones, Arnes Laboratory, Iowa State University, Ames, IA 5001 1

74. Jean CotC, RPN, 2121 Transcanada Highway, Suite 508, Dorval, Quebec H9P 1J3, CANADA

75. John J. Dorning, Department of Nuclear Engineering Physics, Thornton Hall, McCormick

Road, University of Virginia, Charlottesville, VA 22901

- 23 -

76. Larry Dowdy, Computer Science Department, Vanderbilt University, Nashville, TN 37235

77. Donald J. Dudziak, Department of Nuclear Engineering, 110B Burlington Engineering

Labs, North Carolina State University, Raleigh, NC 27695-7909

78. Iain S. Duff, Atlas Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 OQX,

England

79. John Dukowicz, Los Alamos National Laboratory, Group T-3, Los Alamos, NM 87545

80. Richard E. Ewing, Department of Mathematics, University of Wyoming, Laramie, WY

82071

81. Ian Foster, Mathematics and Computer Science Division, Argonne National Laboratory,

9700 South C a s Avenue, Argonne, IL 60439

82. Geoffrey C. Fox, Northeast Parallel Architectures Center, Syracuse University, Syracuse,

NY 13244-4100

83. Chris Fraley, Statistical Sciences, Inc., 1700 Westlake Ave. N, Suite 500, Seattle, WA

98119

84. Paul 0. Frederickson, RIACS, MS 230-5, NASA Ames Research Center, Moffet Field, CA

94035

85. Dennis B. Gannon, Computer Science Department, Indiana University, Bloomington, IN

47401

86. J. Alan George, Vice President, Academic and Provost, Needles Hall, University of Wa-

terloo, Waterloo, Ontario, CANADA N2L 3G1

87. James Glirnm, Department of Mathematics, State University of New York, Stony Brook,

NY 11794

88. Gene Golub, Computer Science Department, Stanford University, Stanford, CA 94305

89. Phil Gresho, Lawrence Livermore National Laboratory, L-262, P. 0. Box 808, Livermore,

CA 94550

90. William D. Gropp, Mathematics and Computer Science Division, Argonne National Lab-

oratory, 9700 South C a s Avenue, Argonne, IL 60439

91. Eric Grosse, AT&T Bell Labs 2T-504, Murray Hill, NJ 07974

92. John Gustafson, 236 Wilhelm, Ames Laboratory, Iowa State University, Ames, IA 50011

- 24 -

93. James J . Hack, National Center for Atmospheric Research, P. 0. Box 3000, Boulder, CO

80307

94. Robert M. Haralick, Department of Electrical Engineering, Director, Intelligent Systems

Lab, University of Washington, 402 Electrical Engineering Building, FT-10, Seattle, WA

98195

95. Michael T. Heath, Center for Supercomputing Research and Development, 305 Talbot

Laboratory, University of Illinois, 104 South Wright Street, Urbana, IL 61801-2932

96. Michael Henderson, Los Alamos National Laboratory, Group T-3, Los Alamos, NM 87545

97. Fred Howes, Office of Scientific Computing, ER-7, Applied Mathematical Sciences, Office

of Energy Research, U. S. Department of Energy, Washington, DC 20585

98. Gary Johnson, Office of Scientific Computing, ER-7, Applied Mathematical Sciences,

Oftice of Energy Research, U. S. Department of Energy, Washington, DC 20585

99. Lennart Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA 02142-1214

100. Malvyn Kalos, Cornell Theory Center, Engineering and Theory Center Bldg., Cornell

University, Ithaca, NY 14853-3901

101. Hans Kaper, Mathematics and Computer Science Division, Argonne National Laboratory,

9700 S. Cass Avenue, Bldg. 221 Argonne, IL 60439

102. Alan €I. Karp, IBM Scientific Center, 1530 Page Mill Road, Palo Alto, CA 94304

103. Kenneth Kennedy, Department of Computer Science, Rice University, P. 0. Box 1892,

Hoiiston, Texas 77001

104. Tom Kitchens, ER-7, Applied Mathematical Sciences, Scientific Computing Staff, Office

of Energy Research, Office G-437 Germantown, Washington, DC 20585

105. Peter D. Lax, Courant Institute of Mathematical Sciences, New York University, 251

Mercer Street, New York, NY 10012

106. James E. Leiss, Rt. 2, Box 142C, Broadway, VA 22815

107. Rich Loft, National Center for Atmospheric Research, P. 0. Box 3000, Boulder, CO 80307

108. Michael C. MacCracken, Lawrence Livermore National Laboratory, L-262, P. 0. Box 808,

Livermore, CA 94550

109. Robert Malone, Los Alamos National Laboratory, C-3, Mail Stop B265, Los Alamos, NM

87545

- 25 -

110. Len Margolin, Los Alamos National Laboratory, Los Alamos, NM 87545

111. Frank McCabe, Department of Computing, Imperial College of Science and Technology,

180 Queens Gate, London SW7 2BZ, ENGLAND

112. James McGraw, Lawrence Livermore National Laboratory, L-306, P. 0. Box 808, Liver-

more, CA 94550

113. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E. California

Blvd. Pasadena, CA 91125

114. Neville Moray, Department of Mechanical and Industrial Engineering, University of Illi-

nois, 1206 West Green Street, Urbana, IL 61801

115. David Nelson, Director of Scientific Computing, ER-7, Applied Mathematical Sciences,

Office of Energy Research, U. S. Department of Energy, Washington, DC 20585

116. V. E. Oberacker, Department of Physics, Vanderbilt University, Box 1807, Station B,

Nashville, T N 37235

117. Joseph Oliger, Computer Science Department, Stanford University, Stanford, CA 94305

118. Robert O’Malley, Department of Mathematical Sciences, Rensselaer Polytechnic Institute,

Troy, NY 12180-3590

119. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University of

Virginia, Charlottesville, VA 22901

120. Ron Peierls, Applied Mathematical Department, Brookhaven National Laboratory, Up-

ton, NY 11973

121. Richard Pelz, Dept . of Mechanical and Aerospace Engineering, Rutgers University, Pis-

cataway, NJ 08855-0909

122. Paul Pierce, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaverton, OR

97006

123. Robert J . Plemmons, Departments of Mathematics and Computer Science, North Car-

olina State University, Raleigh, NC 27650

124. Jesse Poore, Computer Science Department , University of Tennessee, Knoxville, T N

37996-1300

125. Andrew Priestley, Institute for Computational Fluid Dynamics, Reading University, Read-

ing RG6 2AX, ENGLAND

- 26 -

126. Daniel A. Reed, Computer Science Department, University of Illinois, Urbana, IL 61801

127. Lee Riedinger, Director, The Science Alliance Program, University of Tennessee, Knoxville,

T N 37996

128. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore National Labora-

tory, Livermore, CA 94550

129. Ahmed Sameh, University of Illinois at Urbana-Champaign, Center for Supercomputer

R&D, 469 CSRL, 1308 West Main St., Urbana, IL 61801

130. Dave Schneider University of Illinois at Urbana-Champaign, Center for Supercomputing

Research and Development, 319E Talbot - 104 S. Wright Street Urbana, IL 61801

131. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaverton,

OR 97006

132. Robert Schreiber, RIACS, MS 230-5, NASA Ames Research Center, Moffet Field, CA

94035

133. William C. Skamarock, 3973 Escuela Court, Boulder, CO 80301

134. Richard Smith, Los Alamos National Laboratory, Group T-3, Mail Stop B2316, Los

Alamos, NM 87545

135. Peter Smolarkiewicz, National Center for Atmospheric Research, MMM Group, P. 0. Box

3000, Boulder, CO 80307

136. Jurgen Steppeler, DWD, Frankfurterstr 135, 6050 Offenbach, WEST GERMANY

137. Rick Stevens, Mathematics and Computer Science Division, Argonne National Labora-

tory, 9700 South Cass Avenue, Argonne, IL 60439

138. Paul N. Swarztrauber, National Center for Atmospheric Research, P. 0. Box 3000, Boul-

der, CO 80307

139. Wei Pai Tang, Department of Computer Science, University of Waterloo, Waterloo, On-

tario, Canada N2L 3G1

140. Harold Trease, Los Alamos National Laboratory, Mail Stop B257, Los Alamos, NM 87545

141. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton, VA

23665

142. Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P. 0. Box 1892,

Houston, TX 77251

- 27 -

143. Andrew B. White, Los Alamos National Laboratory, P. 0. Box 1663, MS-265, Los Alamos,

NM 87545

144. David L. Williamson, National Center for Atmospheric Research, P. 0. Box 3000, Boulder,

CO 80307

145. Samuel Yee, Air Force Geophysics Lab, Department LYP, Hancom AFB, Bedford, MA

01731

146. Office of Assistant Manager for Energy Research and Development, US. Department of

Energy, Oak Ridge Operations Office, P. 0. Box 2001, Oak Ridge, T N 37831-8600

147-148. Office of Scientific & Technical Information, P. 0. Box 62, Oak Ridge, T N 37830

